Vergleich

Anti-Phospho-p38 MAPK (Thr180,Tyr182) MAPK14 Antibody

Hersteller Boster
Kategorie
Typ Antibody
Specific against Human, Mouse
Isotype IgG
Format Liquid
Applikationen WB, IHC
Menge 100ul
Host Rabbit
ArtNr BOS-P00176
Targets MAPK1
eClass 6.1 32160702
eClass 9.0 32160702
Lieferbar
Manufacturers Product Category
Primary Antibodies
Manufacturers Research Category
Immunology, Innate Immunity, MAPK Pathway, Protein Phosphorylation, Ser/Thr Kinases, Signal Transduction, TLR Signaling
Short Description
Boster Bio Anti-Phospho-p38 MAPK (Thr180, Tyr182) MAPK14 Antibody (Catalog # P00176). Tested in WB, IHC applications. This antibody reacts with Human, Mouse.
Description
Boster Bio Anti-Phospho-p38 MAPK (Thr180, Tyr182) MAPK14 Antibody (Catalog # P00176). Tested in WB, IHC applications. This antibody reacts with Human, Mouse.
Background
The three Mitogen-Activated Protein Kinases (MAPKs) are evolutionarily conserved protein kinases that control a vast array of cellular processes. p38 MAPK is one of these kinases and it is activated by both inflammatory cytokines and by stress (Johnson and Lapadat, 2002; Shi and Gaestel, 2002). The p38 MAPK is thought to be particularly important in diseases like asthma and autoimmunity but it also plays important roles in the stress response of the nervous system (Philip and Armstead, 2003; Ying et al., 2002). Like the other MAPKs, p38 is activated by a dual specificity kinase that phosphorylates Thr-180 and Tyr-182 (Lin et al., 1995).
Gene Name
MAPK14
Clonality
Polyclonal
Phospho Site
Phosphorylated, Thr180, Tyr182
Concentration
0.5-1mg/ml, actual concentration vary by lot. Use suggested dilution ratio to decide dilution procedure.
Contents
10 mM HEPES (pH 7.5), 150 mM NaCl, 100 µg per ml BSA and 50% glycerol.
Predicted Reactivity
Bovine, Canine, Chicken, Primate, Rat, Zebrafish
Application Details
WB: 1:1000
IHC: 1:250
Application Notes
Specific for endogenous levels of the ~39 kDa p38 MAPK protein phosphorylated at Thr180/Tyr182. Immunolabeling is blocked by preadsorption with the phosphopeptide used as antigen, but not by the corresponding non-phosphopeptide.
Immunogen
Synthetic phospho-peptide corresponding to amino acid residues surrounding Thr180/Tyr182 of rat p38/MAPK, conjugated to keyhole limpet hemocyanin (KLH). Immunogen species is Rat.
Purification
Prepared from pooled rabbit serum by affinity purification via sequential chromatography on phospho and non-phosphopeptide affinity columns.
Storage
Storage at -20°C is recommended, as aliquots may be taken without freeze/thawing due to presence of 50% glycerol. Stable for at least 1 year at -20°C. After date of receipt, stable for at least 1 year at -20°C.
Gene Full Name
Mitogen-activated protein kinase 14
Molecular Weight
41293 MW
Protein Function
Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK14 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstream kinases which are activated through phosphorylation and further phosphorylate additional targets. RPS6KA5/MSK1 and RPS6KA4/MSK2 can directly phosphorylate and activate transcription factors such as CREB1, ATF1, the NF-kappa-B isoform RELA/NFKB3, STAT1 and STAT3, but can also phosphorylate histone H3 and the nucleosomal protein HMGN1. RPS6KA5/MSK1 and RPS6KA4/MSK2 play important roles in the rapid induction of immediate-early genes in response to stress or mitogenic stimuli, either by inducing chromatin remodeling or by recruiting the transcription machinery. On the other hand, two other kinase targets, MAPKAPK2/MK2 and MAPKAPK3/MK3, participate in the control of gene expression mostly at the post-transcriptional level, by phosphorylating ZFP36 (tristetraprolin) and ELAVL1, and by regulating EEF2K, which is important for the elongation of mRNA during translation. MKNK1/MNK1 and MKNK2/MNK2, two other kinases activated by p38 MAPKs, regulate protein synthesis by phosphorylating the initiation factor EIF4E2. MAPK14 interacts also with casein kinase II, leading to its activation through autophosphorylation and further phosphorylation of TP53/p53. In the cytoplasm, the p38 MAPK pathway is an important regulator of protein turnover. For example, CFLAR is an inhibitor of TNF- induced apoptosis whose proteasome-mediated degradation is regulated by p38 MAPK phosphorylation. In a similar way, MAPK14 phosphorylates the ubiquitin ligase SIAH2, regulating its activity towards EGLN3. MAPK14 may also inhibit the lysosomal degradation pathway of autophagy by interfering with the intracellular trafficking of the transmembrane protein ATG9. Another function of MAPK14 is to regulate the endocytosis of membrane receptors by different mechanisms that impinge on the small GTPase RAB5A. In addition, clathrin-mediated EGFR internalization induced by inflammatory cytokines and UV irradiation depends on MAPK14- mediated phosphorylation of EGFR itself as well as of RAB5A effectors. Ectodomain shedding of transmembrane proteins is regulated by p38 MAPKs as well. In response to inflammatory stimuli, p38 MAPKs phosphorylate the membrane-associated metalloprotease ADAM17. Such phosphorylation is required for ADAM17-mediated ectodomain shedding of TGF-alpha family ligands, which results in the activation of EGFR signaling and cell proliferation. Another p38 MAPK substrate is FGFR1. FGFR1 can be translocated from the extracellular space into the cytosol and nucleus of target cells, and regulates processes such as rRNA synthesis and cell growth. FGFR1 translocation requires p38 MAPK activation. In the nucleus, many transcription factors are phosphorylated and activated by p38 MAPKs in response to different stimuli. Classical examples include ATF1, ATF2, ATF6, ELK1, PTPRH, DDIT3, TP53/p53 and MEF2C and MEF2A. The p38 MAPKs are emerging as important modulators of gene expression by regulating chromatin modifiers and remodelers. The promoters of several genes involved in the inflammatory response, such as IL6, IL8 and IL12B, display a p38 MAPK-dependent enrichment of histone H3 phosphorylation on 'Ser-10' (H3S10ph) in LPS-stimulated myeloid cells. This phosphorylation enhances the accessibility of the cryptic NF- kappa-B-binding sites marking promoters for increased NF-kappa-B recruitment. Phosphorylates CDC25B and CDC25C which is required for binding to 14-3-3 proteins and leads to initiation of a G2 delay after ultraviolet radiation. Phosphorylates TIAR following DNA damage, releasing TIAR from GADD45A mRNA and preventing mRNA degradation. The p38 MAPKs may also have kinase-independent roles, which are thought to be due to the binding to targets in the absence of phosphorylation. Protein O-Glc-N-acylation catalyzed by the OGT is regulated by MAPK14, and, although OGT does not seem to be phosphorylated by MAPK14, their interaction increases upon MAPK14 activation induced by glucose deprivation. This interaction may regulate OGT activity by recruiting it to specific targets such as neurofilament H, stimulating its O-Glc-N-acylation. Required in mid-fetal development for the growth of embryo-derived blood vessels in the labyrinth layer of the placenta. Also plays an essential role in developmental and stress-induced erythropoiesis, through regulation of EPO gene expression. Isoform MXI2 activation is stimulated by mitogens and oxidative stress and only poorly phosphorylates ELK1 and ATF2. Isoform EXIP may play a role in the early onset of apoptosis. Phosphorylates S100A9 at 'Thr-113'.
Subcellular Localization
Cytoplasm. Nucleus.
Tissue Specificity
Brain, heart, placenta, pancreas and skeletal muscle. Expressed to a lesser extent in lung, liver and kidney.
Protein Name
Mitogen-activated protein kinase 14

Hinweis: Die dargestellten Informationen und Dokumente (Bedienungsanleitung, Produktdatenblatt, Sicherheitsdatenblatt und Analysezertifikat) entsprechen unserem letzten Update und sollten lediglich der Orientierung dienen. Wir übernehmen keine Garantie für die Aktualität. Für spezifische Anforderungen bitten wir Sie, uns eine Anfrage zu stellen.

Alle Produkte sind nur für Forschungszwecke bestimmt. Nicht für den menschlichen, tierärztlichen oder therapeutischen Gebrauch.

Menge: 100ul
Lieferbar: In stock
lieferbar

Lieferung vsl. bis 13.06.2024 

Vergleichen

Auf den Wunschzettel

Angebot anfordern

Lieferzeit anfragen

Technische Frage stellen

Bulk-Anfrage stellen

Fragen zum Produkt?
 
Schließen