Comparison

Anti-Histone H4 (Tyr-72), Phosphospecific Antibody

Item no. ABC-AN1812
Manufacturer Abcepta
Amount 100 ul
Category
Specific against Cat (Feline, Felis catus), Drosophila, Cattle (Bovine)
Host Rabbit
Isotype IgG
Alias Hist1H4 Histone H4
Available
Manufacturer - Category
Primary Antibodies
Manufacturer - Targets
Chromatin structure is regulated through the activity of core histones (H2A, H2B, H3, and H4) that form the nucleosome. Histone activity is regulated by a variety of post-translational modifications, including acetylation, phosphorylation, and methylation. Histone acetylation and methylation occur primarily at lysine (K) residues in the amino-terminal tail domain. These modifications are important for the regulation of histone deposition, transcriptional activation, DNA replication and repair. Acetylation and methylation of specific lysine residues creates docking sites for DNA repair, transcription, and chromatin regulatory proteins. Methylation of histones may be regulated by phosphorylation events at sites downstream of the N-terminal tail. In histone H4, both EGFR activation and inonizing radiation induce EGFR nuclear translocation and Histone H4 (Tyr-72) phosphorylation, which creates a docking site for Set8 methyltransferase. This promotes K20 methylation in Histone H4 leading to DNA synthesis and repair.
Bio Background
Chromatin structure is regulated through the activity of core histones (H2A, H2B, H3, and H4) that form the nucleosome. Histone activity is regulated by a variety of post-translational modifications, including acetylation, phosphorylation, and methylation. Histone acetylation and methylation occur primarily at lysine (K) residues in the amino-terminal tail domain. These modifications are important for the regulation of histone deposition, transcriptional activation, DNA replication and repair. Acetylation and methylation of specific lysine residues creates docking sites for DNA repair, transcription, and chromatin regulatory proteins. Methylation of histones may be regulated by phosphorylation events at sites downstream of the N-terminal tail. In histone H4, both EGFR activation and inonizing radiation induce EGFR nuclear translocation and Histone H4 (Tyr-72) phosphorylation, which creates a docking site for Set8 methyltransferase. This promotes K20 methylation in Histone H4 leading to DNA synthesis and repair.
Clonality
Rabbit Polyclonal
Gene Name
H4C1
Reactivity
B, C, Dr, E
Calculated Molecular Weight
11367

Note: The presented information and documents (Manual, Product Datasheet, Safety Datasheet and Certificate of Analysis) correspond to our latest update and should serve for orientational purpose only. We do not guarantee the topicality. We would kindly ask you to make a request for specific requirements, if necessary.

All products are intended for research use only (RUO). Not for human, veterinary or therapeutic use.

Amount: 100 ul
Available: In stock
available

Compare

Add to wishlist

Get an offer

Request delivery time

Ask a technical question

Submit a bulk request

Questions about this Product?
 
Close